o_san_na (o_san_na) wrote,
o_san_na
o_san_na

Category:

Вместо солнца скажи "Осанна" 2 часть

Там, где появляется Берлиоз (Бериллиоз), ждите Воланда, он пришёл отрезать ему его лживую голову.



Вместо солнца скажи "Осанна"



Нейтрино (продолжение).

А далее мы слышим новость о КОРОНАВИРУСЕ, поражающем лёгкие. Что это? Есть ли в этой связке событий общая составляющая? И сегодня, я всё же обратила внимание на ВОЗДУХ, а об этом неоднократно говорила Мила. Наш диалог с Милой в комментах - Общество Невидимых, Мир Охотников и Орден Ящериц - 2. СУМЕРКИ!

Кстати, Ядра бериллия являются, образно говоря, родителями ядер бора (и борных нейтрино). Бериллио́з[2][3] — профессиональное заболевание; воспаление соединительной ткани лёгких, вызванное вдыханием пыли или паров, которые содержат бериллий.

Загадка солнечных нейтрино

Почему оказалось меньше борных нейтрино. Куда исчезли бериллиевые нейтрино


Регистрация на Земле четырьмя независимыми установками потока солнечных нейтрино, несомненно, подтвердила термоядерное происхождение солнечной энергии. Но результаты этих экспериментов поставили перед физикой новые проблемы. Как видно из табл. 1, число реакций, вызываемых солнечными нейтрино, оказалось в два-три раза меньше, чем следовало из расчетов, основанных на теоретических моделях Солнца и данных о вероятностях тех или иных каналов ядерных реакций. Какова же природа этих расхождений? Когда в распоряжении физиков были только данные хлор-аргонного эксперимента, большинство склонялись к мысли, что расхождение можно устранить подавив в несколько раз реакции, ведущие к испусканию борных нейтрино. Теоретически это можно сделать, например, уменьшив температуру в центре Солнца всего на 10%. Такое уменьшение температуры, согласно модели Солнца, могло быть связано с небольшим изменением концентрации тяжелых ядер (в основном углерода), влияющим на процессы переноса тепла из центральных областей Солнца.

Однако, когда были получены результаты с установки KAMIOKANDE, выяснилось, что их трудно согласовать с результатами хлор-аргонного эксперимента даже в рамках измененной модели Солнца. Дело в том, что в эксперименте KAMIOKANDE регистрируются только борные нейтрино, в то время как в хлор-аргонном эксперименте заметный вклад должны давать также бериллиевые нейтрино от реакции (8) (табл. 2). Если поток борных нейтрино определить из экспериментов KAMIOKANDE и вычесть его затем из данных хлор-аргонного эксперимента, то оказывается, что для бериллиевых нейтрино не остается места. Другими словами, при сопоставлении обоих экспериментов получается, что вклад бериллиевых нейтрино в процесс (14) подавлен значительно сильнее, чем борных. Но такого не может быть с теоретической точки зрения, так как, подавив реакцию (7) с образованием бериллия, мы неизбежно подавляем (по крайней мере в той же степени) реакцию с образованием бора. Ядра бериллия являются, образно говоря, родителями ядер бора (и борных нейтрино). Поэтому, убив родителей, нельзя не убить их будущих детей. Указанное обстоятельство справедливо для любой модели Солнца.

Нехватка бериллиевых и борных нейтрино особенно ярко проявилась в галлий-германиевых экспериментах. Основной поток нейтрино от pp-реакции должен по расчетам давать всего лишь около половины ожидаемых событий. Остальной вклад должны были бы вносить главным образом бериллиевые и борные нейтрино (см. табл. 2). В то же время эксперименты SAGE и GALLEX показывают, что выход реакции (15) лишь на немного превышает вклад одних только pp-нейтрино (см. табл. 1).

Таким образом, налицо противоречие между экспериментальными данными и стандартной моделью Солнца. Для его устранения предлагается много гипотез (мы не имеем возможности их здесь обсуждать). Необходимо, однако, подчеркнуть, что если в дальнейших опытах подтвердится более сильное подавление потока бериллиевых нейтрино по сравнению с борными, то этот факт невозможно будет объяснить никаким изменением модели Солнца. Какой же может быть выход? Прежде чем обсуждать его, заметим, что во всех предыдущих рассуждениях мы предполагали, что с самими нейтрино на их пути от центра Солнца к Земле не происходит никаких изменений. А можем ли мы быть в этом уверены? Оказывается, нет. На возможность определенных превращений свободного нейтрино было указано еще до экспериментов с солнечными нейтрино.

Нейтринные осцилляции. Эффект Михеева-Смирнова-Вольфенштейна (MSW)

В настоящее время известно, что существуют три типа нейтрино: электронное нюe, мюонное νμ и тау-нейтрино ντ, имеющие такое же лептонное число (лептонный заряд), как и лептон, которому они соответствуют, то есть электрон e-, мюон мю- и тау-лептон тау-. Наряду с этим у каждого нейтрино существует двойник - антинейтрино, обладающее противоположным значением лептонного числа. Это означает, что при столкновении с ядрами электронное нейтрино может рождать только электрон e-, а его антинейтрино - только позитрон e+, мюонное нейтрино - соответственно мюон мю-, а его антинейтрино - антимюон мю+ и т.д. Указанное правило хорошо выполняется на опыте. Именно эти опытные данные и послужили основой для введения особых лептонных чисел у нейтрино.

Насколько точным является закон сохранения лептонных чисел? Согласно современным теоретическим представлениям нет оснований ожидать, что закон сохранения лептонного числа (так же, как закон сохранения тяжелых частиц - барионов) должен быть точным, а не приближенным. В этом отношении лептонное число отличается от электрического заряда, сохранение которого должно быть абсолютно точным законом. Более того, современные модели великого объединения всех сил (слабых, сильных и электромагнитных) предсказывают возможность нарушения законов сохранения лептонных и барионных чисел. С нарушением барионного числа (нестабильностью протона), возможно, связана и наблюдаемая зарядовая асимметрия нашей Вселенной, то есть отсутствие в ней антивещества.

Несохранение лептонного числа может приводить к весьма своеобразному явлению - так называемым нейтринным осцилляциям. Оно заключается в том, что нейтрино какого-то определенного типа будет при своем движении в вакууме периодически переходить в нейтрино (или антинейтрино) других типов и обратно. По своему характеру нейтринные осцилляции аналогичны биениям, которые наблюдаются в системе двух одинаковых маятников, подвешенных на общем подвесе (через который осуществляется их связь). Если отклонить какой-либо из маятников, то его колебания через некоторое время передадутся другому маятнику, амплитуда колебаний которого постепенно возрастет до максимальной величины, а амплитуда первого упадет до нуля, после чего начнет падать амплитуда второго и расти амплитуда первого и процесс, если мало затухание, будет периодически повторяться. Такая аналогия нейтринных осцилляций с биениями маятников не случайна, так как по законам квантовой механики описание осцилляций и биений оказывается математически одинаковым. (На возможность осцилляций между нейтрино и антинейтрино с нарушением лептонного числа впервые указал Б. Понтекорво в 1957 году.) Если для простоты рассмотреть осцилляцию только между двумя типами нейтрино, то можно показать, что за полупериод осцилляции (отвечающий максимуму перехода) нейтрино должно пройти в вакууме от места своего рождения расстояние

(18)
где p - импульс нейтрино, выраженный в МэВ/с, а - модуль разности квадратов масс нейтрино в эВ/c2. Для того чтобы обнаружить осцилляцию, необходимо детектировать нейтрино на расстояниях L от источника, сравнимых или больших, чем длина L0: L > L0. Если массы нейтрино очень малы, то необходимое расстояние от источника становится очень большим. Детектирование солнечных нейтрино, как заметил Б. Понтекорво, дает уникальную возможность для изучения осцилляций и оценки величины масс нейтрино. При максимальном смешивании двух или трех типов нейтрино поток рождающихся в Солнце электронных нейтрино будет на Земле уменьшен в среднем соответственно в два или три раза. А так как мюонное и тау-нейтрино не могут производить реакции с образованием электрона, соответственно уменьшится число реакций (14) и (15). Неизменным, однако, окажется число реакций, протекающих за счет взаимодействия нейтральных токов, в котором νe, νμ, ντ участвуют одинаково. Определенный дополнительный вклад νμ и ντ будут давать и в реакцию (13). Таким образом, возникает возможность, изучая одновременно все упомянутые реакции, непосредственно проверить гипотезу нейтринных осцилляций.

Особую привлекательность этой гипотезе придает замечательный эффект, открытый С. Михеевым, А. Смирновым и Л. Вольфенштейном. Оказалось, что из-за разницы между взаимодействием электронного и мюонного (а также тау-) нейтрино с электронами солнечных недр может происходить в определенной области энергий и при определенной плотности вещества резонансное усиление перехода νe-----> νμ (и нюe----->ντ). Благодаря этому, как показали С. Михеев и А. Смирнов, электронные нейтрино, рождающиеся вблизи центра Солнца и распространяющиеся в среде с уменьшающейся плотностью вещества, могут при определенных энергиях практически полностью и необратимо переходить в нейтрино других типов. Очень важно, что этот эффект проявляется при очень маленьких смешиваниях и массах нейтрино, которые, согласно теоретическим моделям, являются предпочтительными. Указанный эффект может естественным образом объяснить не только наблюдаемое уменьшение числа нейтринных реакций, но и полное отсутствие электронных нейтрино средних энергий от реакции (8) и CNO-цикла. Необходимая для этого разность квадратов масс нейтрино должна составлять дельтаm2neaeqv6.10-6 эВ2, а смешивание (в вакууме) - около 0,5%. При таком значении дельтаm2 длина осцилляции (18) может превысить размеры Земли и обнаружение ее от земных источников становится невозможным. Нереальными будут и попытки определить массу нейтрино в лабораторных опытах, если она столь мала. (Экспериментальные пределы на массы нейтрино сейчас составляют m(νe) < 4 эВ, m(νμ) < 300 кэВ, m(ντ) < 15 МэВ,.) Поэтому изучение солнечных нейтрино приобретает фундаментальное значение для физики элементарных частиц. Именно исследуя нейтринные осцилляции можно получить сведения о великом объединении сил природы. Гипотеза осцилляций солнечных нейтрино, как уже отмечалось, может быть непосредственно проверена на установках нового поколения. На этих же установках возможна в принципе и проверка механизма усиления нейтринных осцилляций MSW путем измерения спектра солнечных нейтрино (по энергиям электронов и протонов в реакциях (13) и (16)). Можно надеяться, что в ближайшие годы будут получены сведения, помогающие разгадать загадку солнечных нейтрино.

Примечание при корректуре. К моменту появления корректуры статьи установка SUPERKAMIOKANDE, упомянутая в тексте, уже проработала более 300 дней. Измеренный поток нейтрино составил 0.37 от ожидаемого согласно стандартной модели Солнца. В спектре нейтрино замечены интригующие особенности, которые, возможно, связаны с осцилляциями. Однако этот факт требует дальнейшей проверки.

Семен Соломонович Герштейн, доктор физико-математических наук, профессор кафедры теоретической физики Московского физико-технического института, главный научный сотрудник Института физики высоких энергий (Протвино), член-корреспондент РАН. Автор более 250 научных работ и трех открытий.

Tags: здоровье, наука, солнце
Subscribe

  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

  • 8 comments